The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector.
نویسندگان
چکیده
Plant- and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (herein referred to as P. stewartii), the causative agent of Stewart's bacterial wilt and leaf blight of maize, carries phylogenetically distinct T3SSs. In addition to an Hrc-Hrp T3SS, known to be essential for maize pathogenesis, P. stewartii has a second T3SS (Pantoea secretion island 2 [PSI-2]) that is required for persistence in its flea beetle vector, Chaetocnema pulicaria (Melsh). PSI-2 belongs to the Inv-Mxi-Spa T3SS family, typically found in animal pathogens. Mutagenesis of the PSI-2 psaN gene, which encodes an ATPase essential for secretion of T3SS effectors by the injectisome, greatly reduces both the persistence of P. stewartii in flea beetle guts and the beetle's ability to transmit P. stewartii to maize. Ectopic expression of the psaN gene complements these phenotypes. In addition, the PSI-2 psaN gene is not required for P. stewartii pathogenesis of maize and is transcriptionally upregulated in insects compared to maize tissues. Thus, the Hrp and PSI-2 T3SSs play different roles in the life cycle of P. stewartii as it alternates between its insect vector and plant host.
منابع مشابه
Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii
Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart's wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, ...
متن کاملA novel transcriptional autoregulatory loop enhances expression of the Pantoea stewartii subsp. stewartii Hrp type III secretion system.
The hrp type III secretion regulon of Pantoea stewartii is regulated by a cascade involving the HrpX/HrpY two-component system, the HrpS enhancer-binding protein and the HrpL alternate sigma factor. hrpXY is both constitutive and autoregulated; HrpY controls hrpS; and HrpS activates hrpL. These regulatory genes are arranged in the order hrpL, hrpXY and hrpS and constitute three operons. This st...
متن کاملAnalysis of the in planta transcriptome expressed by the corn pathogen Pantoea stewartii subsp. stewartii via RNA-Seq
Pantoea stewartii subsp. stewartii is a bacterial phytopathogen that causes Stewart's wilt disease in corn. It uses quorum sensing to regulate expression of some genes involved in virulence in a cell density-dependent manner as the bacterial population grows from small numbers at the initial infection site in the leaf apoplast to high cell numbers in the xylem where it forms a biofilm. There ar...
متن کاملComplete Genome Assembly of Pantoea stewartii subsp. stewartii DC283, a Corn Pathogen
The phytopathogen Pantoea stewartii subsp. stewartii DC283 causes Stewart's wilt disease in corn after transmission from the corn flea beetle insect vector. Here, we report that the complete annotated genome of P. stewartii DC283 has been fully assembled into one circular chromosome, 10 circular plasmids, and one linear phage.
متن کاملUnderstanding the Quorum-Sensing Bacterium Pantoea stewartii Strain M009 with Whole-Genome Sequencing Analysis
Pantoea stewartii is known to be the causative agent of Stewart's wilt, which usually affects sweet corn (Zea mays) with the corn flea beetle as the transmission vector. In this work, we present the whole-genome sequence of Pantoea stewartii strain M009, isolated from a Malaysian tropical rainforest waterfall.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 78 17 شماره
صفحات -
تاریخ انتشار 2012